
WAPH-Web Application Programming and Hack-
ing
Instructor: Dr. Phu Phung
Student
Name: Ruthvik Suvarnakanti

Email: suvarnrk@mail.uc.edu

Figure 1: Ruthvik Suvarnakanti

Lab 2 - Front End Web Development
Overview: In this hands-on web development lab, we begin by constructing a
simple HTML page, tossing in essential tags and forms to lay the groundwork.
Then, we delve into JavaScript, tackling it from various angles: embedding it
directly, using the script tag, linking to an external file, and even pulling code
from a remote repository. To tackle up the look of our webpage, we play around
with CSS – going for inline, internal, and external styles to make things visually
appealing. Now, here comes jQuery, our trusty sidekick. It helps us pull off some
slick AJAX calls, reaching out to the echo.php file that is needed to be reused
from lab 1 for some asynchronous action. But we’re not stopping there. We
bring in two web services using jQuery and the fetch method – one for serving
up random jokes and the other for taking a crack at guessing ages. And to put
the finishing touches on our project, we enlist Pandoc to effortlessly transform
our README.md into a published PDF file.

https://github.com/suvarnrk/waph-suvarnrk/blob/main/README.md

1

https://github.com/suvarnrk/waph-suvarnrk/blob/main/README.md

Part 1 : Basic HTML with forms, and JavaScript
Task 1. HTML

As part of this task, we developed a basic HTML webpage named “waph-
nakkantm.html.” The webpage incorporates essential tags like

,

,

, , , and

. These tags structure the content, create headings, hyperlinks, and images,
making the webpage interactive and visually appealing.

Included file waph-suvarnrk.html:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>WAPH- Ruthvik Suvarnakanti</title>
</head>
<body>
<div >

<div id="top">
<h1>Web Application Programming and Hacking</h1>
<h2>Front End Development Lab </h2>
<h3>Instructor : Dr Phu Phung</h3>

</div>
<div >

<div id="menubar">
<h3>Student : Ruthvik Suvarnakanti</h3>

</div>
<div id="main">

<p>A Simple HTML Page</p>
Using the W3 Schools Template
<hr>
Interaction with forms

<div>
<i> Form with an HTTP GET request</i>
<form action="/echo.php" method="GET">

Your Input: <input name="input">
<input type="submit" value="Submit">

</form>

</div>

2

<div>
<i> Form with an HTTP POST request</i>
<form action="/echo.php" method="GET" name="echo_post">

Your Input: <input name="input" onkeypress="console.log('You pressed a key')">
<input type="submit" value="Submit">

</form>
</div>

</div>
</div>

</div>
</body>
</html>

Figure 2: A simple HTML Page

3

Figure 3: A simple HTML Page

Task 2. Simple JavaScript

In this task, we got a simple introduction to JavaScript syntax and explored
various methods of adding JavaScript code into an HTML file. We played
around with Inline JS, where we wrote code to show the current date and time
when clicked. Additionally, we logged the click event on the console for a bit of
behind-the-scenes action.

<div>
<hr>
Experiments with Javascript

<i>Inlined JavaScript</i>
<div id="date" onclick="document.getElementById('date').innerHTML= Date()"> Click here to Show Date()</div>

</div>

-JavaScript code in a

-JS code in JS file and and code in HTML page to show or hide email when clicked.
```JavaScript

var shown=false;
function showhideEmail(){

if(shown){
document.getElementById('email').innerHTML="Show ny email";
shown =false;

}else{

4



Figure 4: Display date/time when clicked

Figure 5: Display digital clock

5



Figure 6: show email when clicked

Figure 7: Display analog clock

6



var myemail="<a href='mailto:suvarnrk"+"@"+"mail.uc.edu'>suvarnrk"+"@"+"mail.uc.edu</a>";
document.getElementById('email').innerHTML=myemail;
shown=true;

}
}

<div id="email" onclick="showOrHideEmail()">Show my email</div>
<script type="text/javascript" src="email.js"></script>

-Displaying an Analog clock with an external Javascript code and code in HTML
page.

<canvas id="analog-clock" width="150" height="150" style="background-color:#999"></canvas>
<script src="https://waph-uc.github.io/clock.js"></script>
<script type=text/javascript>

const canvas = document.getElementById("canvas");
const ctx = canvas.getContext("2d");
let radius = canvas.height / 2;
ctx.translate(radius, radius);
radius = radius * 0.90
setInterval(drawClock, 1000);

function drawClock() {
drawFace(ctx, radius);
drawNumbers(ctx, radius);
drawTime(ctx, radius);

}
</script>

7



Part II - Ajax, CSS, jQuery, and Web API integration
Task 1: Ajax

We wrote HTML code that captures user input and uses AJAX to make a GET
call to echo.php. The received response is then showcased within a designated
div. Since it’s a GET call, the input was transmitted as a path variable in the
URL.

<div>
<i> Ajax Requests</i><br>
Your Input:
<input name="data"
onkeypress="console.log('You have pressed a key ')" id="data">
<input type="button" class="button round" value="Ajax Echo" onclick="getEcho()">
<div id="response"></div>

<input class="button round" type="submit" value="JQuery Ajax Echo" onclick="getJqueryAjax()">
<input class="button round" type="submit" value="JQuery Ajax Echo Post" onclick="getJqueryAjaxPost()">
<input class="button round" type="submit" value="Guess Age" onclick="guessAge($('#data').val())">
<div id="response"></div>

</script>

We examined the Ajax call response in the inspect view, observing that the
request method was GET, the status code indicated a successful 200 OK, and
the input data was transmitted within the URL.

Figure 8: Making an Ajax get call and inspecting respponse

8



Task 2: CSS

a) Inline CSS

<body style="background-color: powderblue;">
<h1 style="color: blue;">Web Application Programming and Hacking</h1>

Figure 9: webpage after adding inline CSS

b) Internal CSS.

<style>
.button{

background-color:green;
border: none;
color: white;
padding: 5px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 12px;
margin: 4px 2px;
cursor: pointer;

}
.round{border-radius: 8px;}
#response{background-color: orange;}
}

<!-- HTML code -->
</style>
input class="button round" type="submit" value="JQuery Ajax Echo" onclick="getJqueryAjax()">

<input class="button round" type="submit" value="JQuery Ajax Echo Post" onclick="getJqueryAjaxPost()">

9



<input class="button round" type="submit" value="Guess Age" onclick="guessAge($('#data').val())">
<div id="response"></div>

c) External CSS from the remote repository provided in the lecture.https://waph-
uc.github.io/style1.css.

<link rel="stylesheet" type="text/css" href="https://waph-uc.github.io/style1.css">
<!-- HTML code -->
<div class="container wrapper">
<!-- HTML code -->

<div class="wrapper">
<!-- HTML code -->

</div>
</div>

Figure 10: web page after adding internal CSS and external CSS

10

https://waph-uc.github.io/style1.css
https://waph-uc.github.io/style1.css


Task 3: JQuery

We included the jQuery library in the HTML code, incorporating two buttons
one for jQuery Ajax GET and the other for jQuery Ajax POST. These buttons
are designed to initiate GET and POST calls, respectively, to echo.php using
jQuery. In the case of the Ajax GET request to echo.php, we inspected the
response in the view, noting that it was a GET call with a status code of 200
OK. i. Ajax GET request to echo.php , the response is analyzed in the inpect
view. The call was GET and status code was 200OK.

<!-- HTML code -->
<input class="button round" type="submit" value="JQuery Ajax Echo" onclick="getJqueryAjax()">
<!-- HTML code -->
<script>

function getJqueryAjax(){
var input=$("#data").val();

if(input.length==0)
return;

$.get("echo.php?data="+input,
function(result){

printResult(result);
});

$("#data").val("");
}

function printResult(result){
$("#response").html(result);
}

</script>

Figure 11: JQuery Ajax GET request to echo.php

11



i. Ajax POST request to echo.php , the response is analyzed in the inpect view.
The call was POST and status code was 200OK.

<!-- HTML code -->
<input class="button round" type="submit"

value="JQuery Ajax Echo Post" onclick="getJqueryAjaxPost()">
<!-- HTML code -->
<script>

function getJqueryAjaxPost(){
var input=$("#data").val();
if(input.length==0)

return;
$.post("echo.php",{data:input},function(result){

printResult(result);
});

$("#data").val("");
}

function printResult(result){
$("#response").html(result);
}

</script>

Figure 12: JQuery Ajax POST request to echo.php

12



Task 4: WEB API Integration.

i. Using Ajax on https://v2.jokeapi.dev/joke/Programming?type=single

We wrote JavaScript code with jQuery Ajax to make a GET call to the specified
web service. After receiving the response in JSON format, we converted it to a
string and displayed it in the console. To extract the joke from this response, we
used the result.joke property. This service generates a different random joke each
time the webpage is refreshed, adding a touch of humor to the user experience.

Figure 13: Random Joke displayed when the page is loaded

The below picture represents image of randomly created joke when page is
loaded.

<!-- HTML code -->
<script>
$.get("https://v2.jokeapi.dev/joke/Programming?type=single",function(result){

console.log("from joke API: "+ JSON.stringify(result));
$("#response").html("Programming joke of the day: " +result.joke);
});

</script>
<!-- HTML code -->

ii. Using the fetch API on https://api.agify.io/?name=input

In JavaScript, the fetch method is employed to initiate an HTTP request to
the mentioned web service. Since this is an asynchronous call, the function is
marked with the async keyword, and await is utilized to coordinate the response.
The HTTP request executed is of the GET type, and a 200 OK status code
confirms the success of the operation.

13

https://v2.jokeapi.dev/joke/Programming?type=single
https://api.agify.io/?name=input


Figure 14: Response of the webservice in inspect view

<script>
async function guessAge(name){

const response= await fetch("https://api.agify.io/?name="+name);
const result= await response.json();
$("#response").html("Hello "+name+" ,your age should be "+result.age);

}
</script>

The pictures of API calls are not responsive as there are too many request to
API and gettting a status of 429 which is meant for request limit reached. I am
attaching the pictures of the same here.

Below is the response of the API call.

Below is the final webPage after completing all the tasks and following the
lectures.

Following the completion of the lab, a directory named “Lab2” was established to
house both the project report and related files. Subsequently, these modifications
were pushed to the repository. The project report was generated from the
README.md file using the Pandoc tool.

14



Figure 15: HTTP request to API

Figure 16: Response from API

15



Figure 17: Ruthvik Suvarnakanti Final Page

16


	WAPH-Web Application Programming and Hacking
	Instructor: Dr. Phu Phung
	Student
	Lab 2 - Front End Web Development
	Part 1 : Basic HTML with forms, and JavaScript
	Task 1. HTML
	Task 2. Simple JavaScript

	Part II - Ajax, CSS, jQuery, and Web API integration
	Task 1: Ajax
	Task 2: CSS
	Task 3: JQuery
	Task 4: WEB API Integration.



