WAPH-Web Application Programming and Hack-
ing

Instructor: Dr. Phu Phung

Student

Name: Ruthvik Suvarnakanti

Email: suvarnrk@mail.uc.edu

Figure 1: Ruthvik Suvarnakanti

Lab 1 - Foundations of the WEB

Overview: This lab deals with web technologies , HTTP protocol and basic
web application programming. Focusing on Wireshark and TELNET for ex-
amining the HTTP requests, responses and comparing them with broswer sent
requests. Moving on to the web application programming I got familiarized
with develepment of CGI programs in C and incorporating HTML templates.
Additionally this lab covers PHP web application development. The final task
explores HTTP GET and POST request utilizing wireshark and curl. The Labsl
report was written in Markdown format and Pandoc tool was used to genearate
the PDF report for submission.

https://github.com/suvarnrk/waph-suvarnrk/blob/main/labs/labl /READM
E.md

Part 1 : The WEB and the HTTP Protocol
Task 1. Familiar with the Wireshark tool and HTTP protocol

A popular tool for analyzing network packets and protocols, Wireshark records
and shows intricate packet data to aid with network problems. Installing it
on Ubuntu virtual machines, checking the version, and using it to examine
and solve network problems are all possible. Firstly, Install Wireshark in
ubuntu using commands from terminal. Open the Wireshark and filter the

https://github.com/suvarnrk/waph-suvarnrk/blob/main/labs/lab1/README.md
https://github.com/suvarnrk/waph-suvarnrk/blob/main/labs/lab1/README.md

captures with “any” using which results in all traffics happening. Filter the
displaying packets using “http”. Give a request in the browser , here I have given
“http://example.com/index.html” as a request and observed the packets in the
Wireshark by filtering http in the displayed packets. There will be a HTTP
GET request and HTTP response for the request given in browser, we need to
capture those packets as part of one this module.

Fle Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

ODNORE @< >V~ RAQE

source Destination Protocol_Length Info.
2.5 192.167.9.2 ocse 58 Response

1.216.34 _HTIP__ 409 GET /index.ht

5 1200 0

Ok (text/hen
3272 bits), 409 by ured (3272 bits) on interface any, id 0

Src: 192.167.9.212, Dst: 93.184.216.34
c Port: 54066, Dst Port: 80, Seq: 1, Ack: 1, Len: 353

=
B
A
&
9

ens

© 7_“httpr" s neither a feld nor a protocol name. Packets: 1666 - Displayed: 28 (1.7%) - Dropped:0 (00%) _ Profile: Default

Figure 2: Wireshark HT'TP Request

“any
Fle gdit yiew Go Gapture Analyze gtatistics Telephony Wireless Jools Help

@DPERE ®C > V-~ QAQQHE

Protocol_Lengt
ocse

Wt

(8608 bits), 1076 bytes captured (8608 bits) on

Src: 93.184.216.34, Dst: 192.167.9.212
80, Dst Port: 54066, Sea: 1, Ack: 3

"QOEPO

a
c

®

Packets: 1666 - Displayed: 28 (1.7%) Dropped: 0 (0.0%) _ Profile: Default

Figure 3: Wireshark HTTP Response

Wireshark - Follow HTTP Stream (tcp.stream eq 70) - any
le Edt View Go Capture Analyze SY

Fle
P eNERE UnTTPr11

tepstream eq 70

Mypertext Transfer Protocol
+ HTTP/1.1 200 OK\F\n

29 Jan 2024 18:10:06 GHT

u, 17 Oct 2019 07:18:26 GHT
Ecs 5190)
ccept-Encoding

5]
p
|
@
n
A
®
9

n (1,981 bytes) - | Show dataas ASCI
Find ext

Frame (1076 oyces) | Unkompressea enc
reshark_scypsshae C Filter Out This Stream || Print || Saveas. Back | @close | |

Figure 4: Wireshark HTTP Stream

Task 2. Understanding HTTP using telnet and Wireshark

Wireshark was started to capture the network packets before making the HTTP
request to exmaple.com/index.html via TELNET through the terminal. For using
the TELNET first the connection was established to the exmaple.com webserver
through the syntax telnet example.com portNumber. After the connection is
established the type of request , path file , http version and host name were given
for making the HTTP Request. And the response was received after clicking on
the enter twice.

administrator@mwph-ym: -

enfont, "Segoe UI", "Open Sans”, "Melvetica Neue',

Figure 5: Telnet request

Telnet, a network application utilizing the telnet protocol, facilitates TCP
connections to servers for data exchange. In this task we will be requesting
the example.com/index.html through telnet instead of using browser request.
Connection should be established firstly between the telnet and example.com
webserver using command “telnet example.com 80” here 80 is the port number.
After a successful connection is established, GET command and Host commands
are entered manually to get the required response.

Edit View Go Capture Analyze Statistics Telephony Wi Tools Help
ONERE @K >~ RQAQE
hitp
Protocol_Length info.

WITe 143 GE

T/ Wit
Wt T

45 HT

ire (464 bits), 58 bytes captured (464 bits) on interface
vi

rsion 4, Src: 192.167.9.212, Dst

v o1, Src Port: 45190, Dst P

(3
Hypertext Transfer Protocol

(47 bytes): #506(28), #730(19), b
+ GET /index.htal WTTP/1.0\r\n

FAMe (58 0YCES) | KEasSEmOD L (91 UYLy
7 _wireshark_anyYHSMH Packets: 751 - Displayed: 4 (0.5%) - Oropped:0 (0.0%) _Profile: Default

Figure 6: Telnet request in wireshark

The HTTP replies in Wireshark were identical whether viewed using a browser
and TELNET.

“any
fle Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

@NMERE ®C)Y QAQE

rotocol_Length Info
i 143 GE
P

wire (1632 bits), 204 bytes captured (1632 bits) on interface any, 1d 6

212
a: 1461, Ack: 48, Len: 148

7 _wireshark Packets: 751 - Displayed: 4 (0.5%)- Dropped:0 (0.0%) _Profile: Default

Figure 7: Telent response in wireshark

Part 2 - Basic Web Application Programming
Task 1: CGI Web applications in C

A. CGI is a commonly used protocol allowing web servers to communicate with
external applications by executing them as command-line programs. To write a
C “Hello World!” CGI program, write a script that outputs “Hello World CGI!
From Ruthvik Suvarnakanti, WAPH.” The code may be run as a standard binary
application and built using gce installable with “$ sudo apt install gec”. After
creating a helloworld.c program copy it to the helloworld.cgi in cgi-bin folder.
After entering the commands, enter ” http://localhost/cgi-bin/helloworld.cgi “
you will get the response in the browser for which the code you entered.

Figure 8: CGI program in C

B. I enhanced my CGI programming in C by integrating a basic HTML template
featuring the course name as the title and student details. After compiling the
code with gec, I placed the resulting file in usr/lib/cgi-bin for browser access.

Included file helloworld.c:

#include<stdio.h>

int main() {

const char *htmlContent = "<!DOCTYPE html> <html> <head> <title>Web Application Programr
"</head> <body> <h1>Student: Ruthvik Suvarnakanti</hi>"
"<p>This exercise is done as part of Labl assessment i.e CGI |

printf ("Content-Type: text/html\n\n");
printf("%s", htmlContent);
return O;

Figure 9: CGI in C and HTML

Task 2: A simple PHP Web Application with user input.

A. In the labs/labl folder of your private repository, create a new file named
helloworld.php. The file should contain content that utilizes the echo language
construct in PHP for printing strings from texts or expressions. The echo
construct can be employed with or without parentheses, wrapping texts within
either double or single quotes. Additionally, phpinfo() is included to display
PHP information on the server for testing purposes only. Deploy the code to
the root directory of the webserver using the following commands$ cd $ sudo cp
helloworld.php /var/www/html Browsers should be able to view the deployed
page at http://<192.167.9.212> /helloworld.php.

@ web Ap,
G ANotsecure 1921679212

Hello World, This is my first PHP web application , Ruthvik Suvarnakanti, WAPH

PHP Version 8.1.2-1ubuntu2.14

System

Build Date

d 0 (delta @), pack-reused o
KiB | 1.93 MiB/s, done.

> origin/main

README.nd | 125
1 file changed, 97 insertions(+), 28 deletions(-)
S php -version

g 18 2623 11:41:11) (NTS)

p

ght (c) Zend Technolog

-2-1ubuntu2.14, Copyright (c
s

subl d.phy

$ cp hellokorld.php

: cannot create regular file '/var/www/html/helloWorld.php': Perm
: $ sudo he

help “helpztags hexzhcd hexdump
: s sudo cp helloWorld.php /var/www

d for adninistrator
: $ ifconfig
ens160: flags=4163<UP,BROADCAST ,RUNNING, MULTICAST> mtu 1500

Figure 10: helloWorld.php

Included file helloworld.php:

<7php
echo "Hello World! This is my first PHP program, Ruthvik Suvarnakanti , WAPH";
7>

B. Using the echo function, I've developed a simple PHP web application that
outputs the path variable obtained from HTTP queries. It’s crucial to remember
that using PHP’s $_ REQUEST(‘data’) to record path variables in GET and
POST requests exposes you to security flaws including remote code execution,
SQL injections, and data manipulation. It is essential to apply input validation,
use prepared statements for SQL inputs, and sanitize user inputs in order to
reduce these risks.

v % veb Ap;

c (Anox eeeeee 192.167.9212

«
‘Welcome Ruthvik

Q0B

A
=
£

Figure 11: echo.php

Included file echo. php:

<?php
$inputData = $_REQUEST["input"];
echo $inputData ;

>

Task 3: Understanding HTTP GET and POST requests.

A. The call made by the browser was a standard HT'TP GET request, and it used
the “?” character in the URL syntax i.e., IPaddress/echo.php?input=*“value” to
send the path variable. The result included the input variable after that. Wire-
shark was used to examine the request itself, the response, and HTTP stream in
its entirety.

suvarmrc VM

suvamrc v

Capture Analyze Statistics Telephony Wireless

Tools Help
4 OPMERR &<« RAQAAQE
http

No. Source Destination protocol _Length Info
25 7.994052505 .167.9.212 .167.9.212 HITP. 550 GET
36 7.998221641 192.167.9.212 192.167.9.212 HTTP 289 HTTP/1.1 2
Frame 25: 550 bytes on wire (4460 bits), 550 bytes captured (4460 bits) on interface any,
Linux cooked capture
Internet Protocol Version 4, Src: 192.167.9.212, Dst: 192.167.9.212
Transmission Control Protocol, Src Port: 53948, Dst Port: 80, Seq: 1, Ack: 1, Len: 482
Hypertext Transfer Protoco
+ GET /echo.php?input=%22welcomex20Ruthvik%22 HTTP/1.1\r\n

Host: 192.167.9.212\r\n

Connection: keep-alive\r\n

Cache-Control: max-age=é\r\n

Upgrade-Insecure-Requests: 1\r\n

User-Agent: Mozilla/5.6 (X11; Linux x86_64) ApplewebKit/537.36 (KHTML, like Gecko) Chromd
Accept: text/html,application/xhtml+xnl,application/xml;q=9.9, image/avif, iage/webp, inag
Accept-Encoding: gzip, deflate\r\n

Accept -Language

\r\n
[Full

en-US, en;q=0.9\r\n
request URI: ht
[WTTP request 1/1]

[Response _in

192.167.9.212/echo. php?input=%22we lcomeX26Rut hvikx22]
frame: 30)

7 wireshark_anyEPEEH: Packets: 63 - Displayed: 2 (3.2%) - Dropped: 0 (0.0%) _Profile: Default

Figure 12: HTTP GET request in WireShark

2. * <10 x|+
Wwireshark Jan22 1815
*any
File Edit View Go

Copture Analyze Statistics Telephony Wireless Tools Help
a en X € @ tm| —

» =|=jcyeyo!
it

source Destination Protocol Length Info
192.167.9 192.167.9.212 HTTP 550 GE

No. Time
25 7.994052505

2.167..¢

T /echo.php

Frame 39: 289 bytes on wire (2312 bits), 289 bytes captured (2312 bits) on interface any,
Linux cooked capture
Internet Protocol Version 4, Src: 192.167.9.212, Dst: 192.167.9.212
Transmission Control Protocol, Src Port: 80, Dst Port: 53948, Seq: 1, Ack:
Hypertext Transfer Protocol
» HTTP/1.1 200 OK\r\n
Date: Mon,
server

483, Len: 221

22 Jan 2024 23:14:13 GMT\r\

Apache/2.4.52 (Ubuntu)\r\n

» Content-Length: 17\r\n

timeout=s, max=168\r\n

Keep-Alive\r\n

Content-Type: text/html; charset=UTF-8\r\n

\r\n

[HTTP response 1/1]
[Time since request: 0.004169136 seconds]
Request in f. s
(Request URI: http://192.167.9.212/echo.php?inpu
File Data: 17 bytes

- Line-based text data
“Welcome Ruthvik"

22We |comex20Ruthvikx22]
text/html (1 lines)

wireshark_anyEPEEH:

Packets: 63 - Displayed: 2 (3.2%) - Dropped: 0 (0.0%)

Profile: Default

Figure 13: HTTP response in WireShark

B. A command-line program called Client URL (cURL) is intended for data
processing over various network protocols. In this case, I sent a POST call to
the echo.php endpoint using cURL in the terminal. This required utilizing the
cURL command-line tool to deliver data to the server using the HTTP POST
protocol.

curl -X POST localhost/echo.php -d “input= Ruthvik”

& Terminal

$ sudo wireshark &

(wireshark: 18:14:60.560250 [GUI
d p/runtine-root’
5 oo

]
]
]
]
]

$ curl -X POST http://localhost/echo.php -d

' not found, but led with:
nstall curl # vers A
install curl # version 7.81.0-1ubuntul.14
p info curl' for additional versions.
: $ sudo apt install curl
Reading package
Building depend
Reading state i
The following NEW
curl
© upgraded, 1 newly installed, 0 to remove and 21 not upgraded.
ed to 194 kB of archives.
454 kB of additional e will be used.
ubuntu. con/ubuntu tes/main ande4 curl ande4 7.81.0-1ubuntu

)

elected package curl

241 nd directories currently installed.)
1ubuntu1.15_and6a.deb ...

S curl -X POST http://localhost/echo.php -d

sl

Wireshark - Follow HTTP Stream (tcp.stream eq 1) - any

ST /echo.php HTTP/1.1
t: localhost
curl/7.81.0

Length: 13 5
pe: application/x-ww-forn-urlencoded -

input=RuthvikHTTP/1.1 200 OK
Date: Mon, 22 Jan 2624 23:23:30 GMT
Server: Apache/2.4.52 (Ubuntu)
Content-Length: 7

Content-Type: text/html; charset=UTE-8

» Frame 1 srface any,
» Linux ¢
» Interne
» Transmi
- Hypert

A
&
9

Bn: 164
Ruthvik

» HTML Fg

eh wos

1 client pkt, 1 server it 1 tum
Entire conversation (318 bytes) ~| showdataas |Ascl
Find: Find Next

@Help Filter Out This Stream Print Saveas Back | @close
Ter rofile: Default

Figure 15: HTTP Stream in Wireshark

C.An analysis tool such as Wireshark may be used to compare the similarities
between HTTP GET and POST requests, which are essential for client-server
communication and contain request headers and response codes. Interestingly,

they communicate data differently: POST uses the HTTP body, whereas GET
uses the URL. GET is usually used for retrieving, whereas POST is used for
updating, and POST is seen to be more secure. The GET and POST replies
in the echo.php web application are the same. The project report also had a
Labs/Labl folder created for it, and the README.md file was used to construct
the report using the Pandoc tool.

10

	WAPH-Web Application Programming and Hacking
	Instructor: Dr. Phu Phung
	Student
	Lab 1 - Foundations of the WEB
	Part 1 : The WEB and the HTTP Protocol
	Task 1. Familiar with the Wireshark tool and HTTP protocol
	Task 2. Understanding HTTP using telnet and Wireshark

	Part 2 - Basic Web Application Programming
	Task 1: CGI Web applications in C
	Task 2: A simple PHP Web Application with user input.
	Task 3: Understanding HTTP GET and POST requests.

