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Figure 1: Ruthvik Suvarnakanti

Lab 1 - Foundations of the WEB

Overview: This lab deals with web technologies , HTTP protocol and basic
web application programming. Focusing on Wireshark and TELNET for ex-
amining the HTTP requests, responses and comparing them with broswer sent
requests. Moving on to the web application programming I got familiarized
with develepment of CGI programs in C and incorporating HTML templates.
Additionally this lab covers PHP web application development. The final task
explores HTTP GET and POST request utilizing wireshark and curl. The Labsl
report was written in Markdown format and Pandoc tool was used to genearate
the PDF report for submission.

https://github.com/suvarnrk/waph-suvarnrk/blob/main/labs/labl /READM
E.md

Part 1 : The WEB and the HTTP Protocol
Task 1. Familiar with the Wireshark tool and HTTP protocol

A popular tool for analyzing network packets and protocols, Wireshark records
and shows intricate packet data to aid with network problems. Installing it
on Ubuntu virtual machines, checking the version, and using it to examine
and solve network problems are all possible. Firstly, Install Wireshark in
ubuntu using commands from terminal. Open the Wireshark and filter the


https://github.com/suvarnrk/waph-suvarnrk/blob/main/labs/lab1/README.md
https://github.com/suvarnrk/waph-suvarnrk/blob/main/labs/lab1/README.md

captures with “any” using which results in all traffics happening. Filter the
displaying packets using “http”. Give a request in the browser , here I have given
“http://example.com/index.html” as a request and observed the packets in the
Wireshark by filtering http in the displayed packets. There will be a HTTP
GET request and HTTP response for the request given in browser, we need to
capture those packets as part of one this module.
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Figure 3: Wireshark HTTP Response
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Figure 4: Wireshark HTTP Stream

Task 2. Understanding HTTP using telnet and Wireshark

Wireshark was started to capture the network packets before making the HTTP
request to exmaple.com/index.html via TELNET through the terminal. For using
the TELNET first the connection was established to the exmaple.com webserver
through the syntax telnet example.com portNumber. After the connection is
established the type of request , path file , http version and host name were given
for making the HTTP Request. And the response was received after clicking on
the enter twice.

administrator@mwph-ym: -

enfont, "Segoe UI", "Open Sans”, "Melvetica Neue',

Figure 5: Telnet request



Telnet, a network application utilizing the telnet protocol, facilitates TCP
connections to servers for data exchange. In this task we will be requesting
the example.com/index.html through telnet instead of using browser request.
Connection should be established firstly between the telnet and example.com
webserver using command “telnet example.com 80” here 80 is the port number.
After a successful connection is established, GET command and Host commands
are entered manually to get the required response.
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Figure 6: Telnet request in wireshark

The HTTP replies in Wireshark were identical whether viewed using a browser
and TELNET.
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Part 2 - Basic Web Application Programming
Task 1: CGI Web applications in C

A. CGI is a commonly used protocol allowing web servers to communicate with
external applications by executing them as command-line programs. To write a
C “Hello World!” CGI program, write a script that outputs “Hello World CGI!
From Ruthvik Suvarnakanti, WAPH.” The code may be run as a standard binary
application and built using gce installable with “$ sudo apt install gec”. After
creating a helloworld.c program copy it to the helloworld.cgi in cgi-bin folder.
After entering the commands, enter ” http://localhost/cgi-bin/helloworld.cgi “
you will get the response in the browser for which the code you entered.

Figure 8: CGI program in C

B. I enhanced my CGI programming in C by integrating a basic HTML template
featuring the course name as the title and student details. After compiling the
code with gec, I placed the resulting file in usr/lib/cgi-bin for browser access.

Included file helloworld.c:

#include<stdio.h>

int main() {

const char *htmlContent = "<!DOCTYPE html> <html> <head> <title>Web Application Programr
"</head> <body> <h1>Student: Ruthvik Suvarnakanti</hi>"
"<p>This exercise is done as part of Labl assessment i.e CGI |

printf ("Content-Type: text/html\n\n");
printf("%s", htmlContent);
return O;



Figure 9: CGI in C and HTML

Task 2: A simple PHP Web Application with user input.

A. In the labs/labl folder of your private repository, create a new file named
helloworld.php. The file should contain content that utilizes the echo language
construct in PHP for printing strings from texts or expressions. The echo
construct can be employed with or without parentheses, wrapping texts within
either double or single quotes. Additionally, phpinfo() is included to display
PHP information on the server for testing purposes only. Deploy the code to
the root directory of the webserver using the following commands$ cd $ sudo cp
helloworld.php /var/www/html Browsers should be able to view the deployed
page at http://<192.167.9.212> /helloworld.php.
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Included file helloworld.php:

<7php
echo "Hello World! This is my first PHP program, Ruthvik Suvarnakanti , WAPH";
7>

B. Using the echo function, I've developed a simple PHP web application that
outputs the path variable obtained from HTTP queries. It’s crucial to remember
that using PHP’s $_ REQUEST(‘data’) to record path variables in GET and
POST requests exposes you to security flaws including remote code execution,
SQL injections, and data manipulation. It is essential to apply input validation,
use prepared statements for SQL inputs, and sanitize user inputs in order to
reduce these risks.
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Figure 11: echo.php

Included file echo. php:

<?php
$inputData = $_REQUEST["input"];
echo $inputData ;

>

Task 3: Understanding HTTP GET and POST requests.

A. The call made by the browser was a standard HT'TP GET request, and it used
the “?” character in the URL syntax i.e., IPaddress/echo.php?input=*“value” to
send the path variable. The result included the input variable after that. Wire-
shark was used to examine the request itself, the response, and HTTP stream in
its entirety.
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B. A command-line program called Client URL (cURL) is intended for data
processing over various network protocols. In this case, I sent a POST call to
the echo.php endpoint using cURL in the terminal. This required utilizing the
cURL command-line tool to deliver data to the server using the HTTP POST
protocol.
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Figure 15: HTTP Stream in Wireshark

C.An analysis tool such as Wireshark may be used to compare the similarities
between HTTP GET and POST requests, which are essential for client-server
communication and contain request headers and response codes. Interestingly,



they communicate data differently: POST uses the HTTP body, whereas GET
uses the URL. GET is usually used for retrieving, whereas POST is used for
updating, and POST is seen to be more secure. The GET and POST replies
in the echo.php web application are the same. The project report also had a
Labs/Labl folder created for it, and the README.md file was used to construct
the report using the Pandoc tool.
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