
WAPH-Web Application Programming and Hack-
ing
Instructor: Dr. Phu Phung
Student
Name: Ruthvik Suvarnakanti

Email: suvarnrk@mail.uc.edu

Figure 1: Ruthvik Suvarnakanti

Hackathon 1: Cross-Site Scripting Attacks and Defenses
Overview: The Hackathon centers around understanding and addressing
XSS (Cross-Site Scripting) attacks, with participants engaging in two distinct
tasks. In the Attack Phase (Task 1), participants are tasked with uncovering
and exploiting XSS vulnerabilities within a designated website (http://waph-
hackathon.eastus.cloudapp.azure.com/xss/). This site is structured with six
levels of vulnerabilities, designed to provide insight into the mechanics of XSS
attacks. Following this, in the Defense Phase (Task 2), participants focus on im-
plementing secure coding practices to mitigate XSS threats. Guided by OWASP
guidelines, they learn techniques such as input validation and output sanitiza-
tion to fortify their applications against XSS vulnerabilities effectively. Upon
completing both phases, participants document their discoveries and solutions
using Markdown format. Utilizing tools like Pandoc, they generate a compre-
hensive PDF report detailing their experiences, including the vulnerabilities
identified, exploitation methods employed, and the strategies adopted to mitigate
risks. Overall, the Hackathon serves as a practical learning platform, offering
participants hands-on experience in identifying, exploiting, and safeguarding
against XSS vulnerabilities, thus fostering a deeper understanding of web security
protocols.

Link to the repository: https://github.com/suvarnrk/waph-suvarnrk/blob/ma
in/labs/hackathon1/README.md

1

https://github.com/suvarnrk/waph-suvarnrk/blob/main/labs/hackathon1/README.md
https://github.com/suvarnrk/waph-suvarnrk/blob/main/labs/hackathon1/README.md


Task 1 : ATTACKS
Level 0

URL : http://waph-hackathon.eastus.cloudapp.azure.com/xss/level0/echo.php

attacking script :

<script>alert("Level 0 : hacked by Ruthvik Suvarnakanti")</script>

Figure 2: Level 0

2

http://waph-hackathon.eastus.cloudapp.azure.com/xss/level0/echo.php


Level 1

URL : http://waph-hackathon.eastus.cloudapp.azure.com/xss/level1/echo.php

attacking script is passed as a pathvariable at the end of the URL

?input=<script>alert("Level 1: Hacked by Ruthvik Suvarnakanti")</script>

Figure 3: Level 1

3

http://waph-hackathon.eastus.cloudapp.azure.com/xss/level1/echo.php


Level 2

URL : http://waph-hackathon.eastus.cloudapp.azure.com/xss/level2/echo.php

Since the HTTP request for this URL doesn’t provide an input field or accept
path variables, a workaround was needed. The URL was linked to a simple
HTML <form>. Through this form, the attacking script is transmitted. This
method allows for a more structured and controlled injection of malicious scripts,
aiding in the exploration and exploitation of XSS vulnerabilities within the web
application. By embedding the attacking script directly into the form submission,
participants can interact with the website and observe how their injected code
affects it. This approach ensures that XSS attacks are carried out within the
web application’s environment, giving participants a clearer understanding of
the vulnerabilities and their potential consequences for the application’s security.

<script>alert("Level 2: Hacked by Ruthvik Suvarnakanti")</script>

Source code Guess of echo.php:

if(!isset($_POST['input'])){
die("{\"error\": \"Please provide 'input' field in an HTTP POST Request\"}");

echo $_POST['input'];

Figure 4: Level 2

4

http://waph-hackathon.eastus.cloudapp.azure.com/xss/level2/echo.php


Level 3

URL : http://waph-hackathon.eastus.cloudapp.azure.com/xss/level3/echo.php

In this level, if the <script> tag is directly passed in the input variable, it is
filtered out. Therefore, to carry out an attack on this URL, the malicious code
had to be divided into multiple parts and then appended together to trigger
an alert on the webpage. This approach bypasses the filtering mechanism and
allows the attacker to execute their payload successfully.

Figure 5: Level 3

?input=<script<script>>alert("Hacked by Ruthvik Suvarnakanti")</scrip</script>t>

Source code Guess of echo.php:

str_replace(['<script>', '</script>'], '', $input)

5

http://waph-hackathon.eastus.cloudapp.azure.com/xss/level3/echo.php


Level 4

URL : http://waph-hackathon.eastus.cloudapp.azure.com/xss/level4/echo.php

In this level, the filtering mechanism completely blocks the <script> tag, even
if it’s attempted by breaking the string and concatenating it. To inject the
XSS script, I utilized the onerror() attribute of the <img> tag. By lever-
aging this attribute, I triggered an alert to be raised on the webpage. This
approach circumvents the filtering mechanism, allowing the XSS script to execute
successfully.

?input=<img%20src="..."
onerror="alert(Level 4: Hacked by Ruthvik Suvarnakanti)">

Source code guess of echo.php:

$data = $_GET['input']
if (preg_match('/<script\b[ˆ>]*>(.*?)<\/script>/is', $data)) {

exit('{"error": "No \'script\' is allowed!"}');
}

else
echo($data);

Figure 6: Level 4

6

http://waph-hackathon.eastus.cloudapp.azure.com/xss/level4/echo.php


Level 5

URL : http://waph-hackathon.eastus.cloudapp.azure.com/xss/level5/echo.php

In this level, both the <script> tag and the alert() method are filtered out.
To trigger a popup alert, I employed a combination of Unicode encoding and
the onerror() method of the <img> tag. By utilizing these techniques together,
I successfully raised a popup alert on the webpage. This method effectively
bypasses the filtering mechanisms in place, allowing the XSS payload to execute.

?input=<img src="invalid"
onerror="\u0061lert(Level 5: Hacked By Ruthvik Suvarnakanti)">

Figure 7: Level 5

7

http://waph-hackathon.eastus.cloudapp.azure.com/xss/level5/echo.php


Level 6

URL : http://waph-hackathon.eastus.cloudapp.azure.com/xss/level6/echo.php

In this level, user input is accepted, but it appears that the source code utilizes
the htmlentities() method to convert all relevant characters into their corre-
sponding HTML entities. This ensures that the user input is rendered strictly as
text on the webpage. To trigger an alert on the webpage in this scenario, I utilized
JavaScript event listeners such as onmouseover(), onclick(), and onkeyup().
Specifically, I opted for the onkeyup() event listener, which generates the alert
on the webpage whenever a key is pressed within the input field. This approach
allowed me to bypass the HTML entity conversion and successfully execute the
desired action.

/" onkeyup="alert('Level 6 : Hacked by Ruthvik Suvarnakanti')"

on passing the above script in the url , this will append to the code and
manipulates the input form element as below.

<form action="/xss/level6/echo.php/"
onkeyup="alert('Level 6 : Hacked by Ruthvik Suvarnakanti')" method="POST">

Input:<input type="text" name="input" />
<input type="submit" name="Submit"/>

Figure 8: Level 6

source code guess of echo.php:

echo htmlentities($_REQUEST('input'));

8

http://waph-hackathon.eastus.cloudapp.azure.com/xss/level6/echo.php


Figure 9: Level 6 after injecting XSS code

TASK 2 : DEFENSE
A . echo.php

The echo.php file in Lab 1 has been updated to include input validation and
XSS defense measures. Initially, it checks whether the input is empty. If it is,
the PHP execution stops. If the input is valid, the htmlentities() function
is utilized to sanitize the input data. This function converts special characters
into their HTML entities, ensuring that the text is displayed as plain text on
the webpage. This action serves to protect against XSS attacks by neutralizing
any potentially harmful scripts embedded within the input.

if(empty($_REQUEST["data"])){
exit("please enter the input field 'data'");
}

$input=htmlentities($_REQUEST["data"]);
echo ("The input from the request is <strong>" .$input. "</strong>.<br>");

9



Figure 10: Defense echo.php

B . Lab 2 front-end part

The waph-suvarnrk.html file underwent a thorough review and update, focusing
on identifying and securing areas where external input is accepted. Validation
procedures were implemented to ensure the integrity of input data, while measures
were taken to sanitize output text to enhance security. i) In particular, when
dealing with HTTP GET and POST request forms, input data is meticulously
validated. A new function named validateInput() was introduced for this
purpose. This function mandates that users provide input text before executing
their request. This precautionary measure significantly reduces the risk of
receiving invalid or potentially malicious input, thereby fortifying the overall
security posture of the application.

10



Figure 11: Defense waph-suvarnrk.html

Figure 12: Validating HTTP requests input

11



ii) In the code, we made a change from using .innerHTML to .innerText in
situations where HTML rendering wasn’t necessary, and only plain text needed
to be shown. This adjustment ensures that any text content is treated strictly
as text, without any interpretation of HTML tags or rendering of elements. By
using .innerText, we reduce the risk of unintended HTML injection or XSS
vulnerabilities, making the display of text content safer within the application.

Figure 13: modifying innerHTML to innerText

12



iii) A new function called encodeInput() was introduced to sanitize the response.
This function converts special characters into their respective HTML entities
before inserting them into the HTML document, thereby preventing cross-site
scripting attacks. This ensures that the content is displayed purely as text and
cannot be executed. Moreover, the code creates a new <div> element and inserts
the content as innerText into this newly created element. Subsequently, this
content is returned as the HTML content. This method guarantees that any
potentially harmful content is properly encoded and displayed securely within
the HTML document, thus reducing the risk of XSS vulnerabilities. Utilizing
innerText ensures that the content is treated strictly as text, preventing any
unintended HTML rendering or script execution.

function encodeInput(input){
const encodedData = document.createElement('div');
encodedData.innerText=input;
return encodedData.innerHTML;

}

13



iv) Additional validations have been introduced for the API https://v2.jokeapi
.dev/joke/Programming?type=single, used to fetch jokes. These validations now
verify if the received result and the result.joke in the JSON response are not
empty. If either of these values turns out to be null or empty, an error message
is generated. This enhancement ensures that only valid and non-empty joke
data is handled and presented, thereby enhancing the application’s reliability
and user experience.

if (result && result.joke) {
var encodedJoke = encodeInput(result.joke);
$("#response").text("Programming joke of the day: " +encodedJoke);

}
else{

$("#response").text("Could not retrieve a joke at this time.");
}

Figure 14: handling Joke API and Guess age API

14

https://v2.jokeapi.dev/joke/Programming?type=single
https://v2.jokeapi.dev/joke/Programming?type=single


v) In the asynchronous function guessAge(), new validations have been added.
These validations ensure that both the received result and the user-entered input
are not empty, null, or equal to 0. If either the result or the input is found to be
in such a state, an error message is thrown. These measures are put in place
to uphold data integrity and guarantee the proper functioning of the function
across different scenarios, thereby improving its reliability and usability.

if(result.age==null || result.age==0)
return $("#response")
.text("Sorry, the webserver threw an error cannot retrieve your age");

$("#response").text("Hello "+name+" ,your age should be "+result.age);

Figure 15: Guess age function in case error is thrown

15


	WAPH-Web Application Programming and Hacking
	Instructor: Dr. Phu Phung
	Student
	Hackathon 1: Cross-Site Scripting Attacks and Defenses
	Task 1 : ATTACKS
	Level 0
	Level 1
	Level 2
	Level 3
	Level 4
	Level 5
	Level 6

	TASK 2 : DEFENSE
	A . echo.php
	B . Lab 2 front-end part



